3,827 research outputs found

    Transport equation for 2D electron liquid under microwave radiation plus magnetic field and the Zero Resistance State

    Full text link
    A general transport equation for the center of mass motion is constructed to study transports of electronic system under uniform magnetic field and microwave radiation. The equation is applied to study 2D electron system in the limit of weak disorder where negative resistance instability is observed when the radiation field is strong enough. A solution of the transport equation with spontaneous AC current is proposed to explain the experimentally observed Radiation-Induced Zero Resistance State.Comment: 9 pages, 1 figur

    Nonlinear Near-Field Microwave Microscope For RF Defect Localization in Superconductors

    Full text link
    Niobium-based Superconducting Radio Frequency (SRF) cavity performance is sensitive to localized defects that give rise to quenches at high accelerating gradients. In order to identify these material defects on bulk Nb surfaces at their operating frequency and temperature, it is important to develop a new kind of wide bandwidth microwave microscopy with localized and strong RF magnetic fields. By taking advantage of write head technology widely used in the magnetic recording industry, one can obtain ~200 mT RF magnetic fields, which is on the order of the thermodynamic critical field of Nb, on submicron length scales on the surface of the superconductor. We have successfully induced the nonlinear Meissner effect via this magnetic write head probe on a variety of superconductors. This design should have a high spatial resolution and is a promising candidate to find localized defects on bulk Nb surfaces and thin film coatings of interest for accelerator applications.Comment: 4 pages, 6 figures Journal-ref: 2010 Applied Superconductivity Conferenc

    Micromachined membrane particle filters

    Get PDF
    We report here several particle membrane filters (8 x 8 mm^2) with circular, hexagonal and rectangular through holes. By varying hole dimensions from 6 to 12 pm, opening factors from 4 to 45 % are achieved. In order to improve the filter robustness, a composite silicon nitride/Parylene membrane technology is developed. More importantly, fluid dynamic performance of the filters is also studied by both experiments and numerical simulations. It is found that the gaseous flow through the filters depends strongly on opening factors, and the measured pressure drops are much lower than that from numerical simulation using the Navier-Stokes equation. Interestingly, surface velocity slip can only account for a minor part of the discrepancy. This suggests that a very interesting topic for micro fluid mechanics research is identified

    Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation

    Full text link
    In order to increase the accelerating gradient of Superconducting Radio Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of its high transition temperature and potential for low surface resistance in the high RF field regime. However, due to the presence of the small superconducting gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite large compared to a single gap s-wave superconductor (SC) such as Nb. Understanding the mechanisms of nonlinearity coming from the two-band structure of MgB2, as well as extrinsic sources, is an urgent requirement. A localized and strong RF magnetic field, created by a magnetic write head, is integrated into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2 films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor deposition technique on dielectric substrates, are measured at a fixed location and show a strongly temperature-dependent third harmonic response. We propose that at least two mechanisms are responsible for this nonlinear response, one of which involves vortex nucleation and penetration into the film. [1] T. M. Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field Microwave Microscope for RF Defect Localization in Superconductors", IEEE Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure

    Gutzwiller Projected wavefunctions in the fermonic theory of S=1 spin chains

    Full text link
    We study in this paper a series of Gutzwiller Projected wavefunctions for S=1 spin chains obtained from a fermionic mean-field theory for general S>1/2 spin systems [Phys. Rev. B 81, 224417] applied to the bilinear-biquadratic (J-K) model. The free-fermion mean field states before the projection are 1D paring states. By comparing the energies and correlation functions of the projected pairing states with those obtained from known results, we show that the optimized Gutzwiller projected wavefunctions are very good trial ground state wavefunctions for the antiferromagnetic bilinear-biquadratic model in the regime K0). We find that different topological phases of the free-fermion paring states correspond to different spin phases: the weak pairing (topologically non-trivial) state gives rise to the Haldane phase, whereas the strong pairing (topologically trivial) state gives rise to the dimer phase. In particular the mapping between the Haldane phase and Gutwziller wavefunction is exact at the AKLT point K=1/3. The transition point between the two phases determined by the optimized Gutzwiller Projected wavefunction is in good agreement with the known result. The effect of Z2 gauge fluctuations above the mean field theory is analyzed.Comment: 10 pages,7 figure

    An artificial remote tactile device with 3D depth-of-field sensation

    Get PDF

    Edge states in Open Antiferromagnetic Heisenberg Chains

    Full text link
    In this letter we report our results in investigating edge effects of open antiferromagnetic Heisenberg spin chains with spin magnitudes S=1/2,1,3/2,2S=1/2, 1,3/2,2 using the density-matrix renormalization group (DMRG) method initiated by White. For integer spin chains, we find that edge states with spin magnitude Sedge=S/2S_{edge}=S/2 exist, in agreement with Valence-Bond-Solid model picture. For half-integer spin chains, we find that no edge states exist for S=1/2S=1/2 spin chain, but edge state exists in S=3/2S=3/2 spin chain with Sedge=1/2S_{edge}=1/2, in agreement with previous conjecture by Ng. Strong finite size effects associated with spin dimmerization in half-integer spin chains will also be discussed.Comment: 4 pages, RevTeX 3.0, 5 figures in a separate uuencoded postscript file. Replaced once to enlarge the acknowlegement
    • …
    corecore